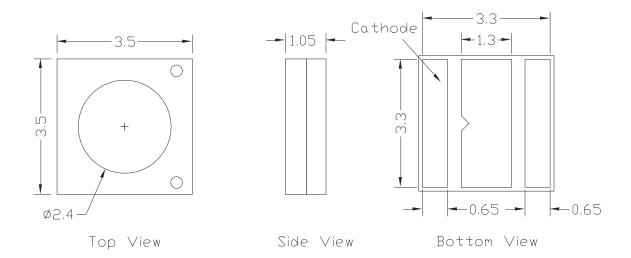
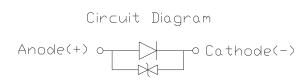


ProLight PB2D-UCLA-TC
0.2W UV Power LED
Technical Datasheet
Version: 1.0

ProLight Opto ® PB2D Series

Features


- ·Best thermal material solution of the world
- ·RoHS compliant
- ·View angle 120°


Main Applications

- **·Disinfection**
- ·Phototherapy
- ·Bio-Analysis/Detection

Emitter Mechanical Dimensions

Notes:

- 1. The cathode side of the device is denoted by the chamfer on the part body.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.10mm.
- 6. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 7. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.
- *The appearance and specifications of the product may be modified for improvement without notice.

7.

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

Flux Characteristics at 20mA, T_J = 25°C

Radiation	Color	Part Number	Radiometric	Power (mW)
Pattern	G 0.0.	Emitter	Minimum	Typical
Lambertian	UV-C	PB2D-UCLA-TC	2	3.5

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 20mA, T_j = 25°C

	F	orward Voltage V	_F (V)	Thermal Resistance
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)
UV-C	5.0	6.5	10.0	15

ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 20mA, T_J = 25°C

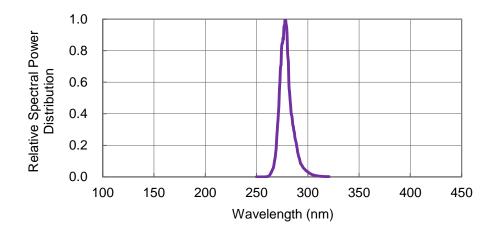
					Total included Angle	Viewing Angle
Radiation	Color	Peak Wavelength λ _P		(degrees)	(degrees)	
Pattern	Coloi	Min.	Тур.	Max.	$\theta_{0.90V}$	2 θ _{1/2}
Lambertian	UV-C	265 nm	275 nm	285 nm	160	120

ProLight maintains a tolerance of ± 3nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter	UV-C	
DC Forward Current (mA)	30	
ESD Sensitivity	±4000V	
(HBM per MIL-STD-883E Method 3015.7)		
LED Junction Temperature	90°C	
Operating Board Temperature	-40°C - 60°C	
at Maximum DC Forward Current	40°C 05°C	
Storage Temperature	-40°C - 85°C	
Soldering Temperature	JEDEC-J-STD-020D	
Allowable Reflow Cycles	3	
Reverse Voltage	Not designed to be driven in reverse bias	

Peak Wavelength Bin Structure


Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
UV-C	A	265	275
	B	275	285

[•] ProLight maintains a tolerance of ± 3nm for peak wavelength measurements.

Color Spectrum, T_J = 25°C

1.UV-C

Forward Current Characteristics, T_J = 25°C

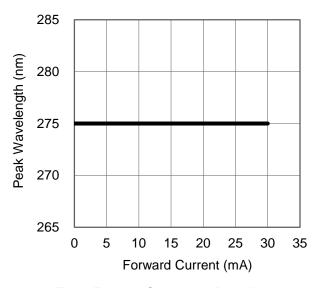


Fig 1. Forward Current vs. Peak Wavelength

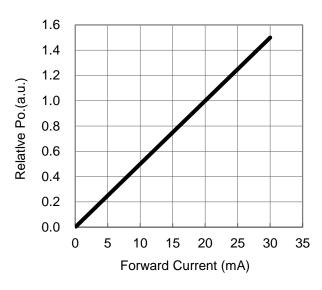


Fig 2. Forward Current vs. Relative Radiant Flux

Forward Current Characteristics, T_J = 25°C

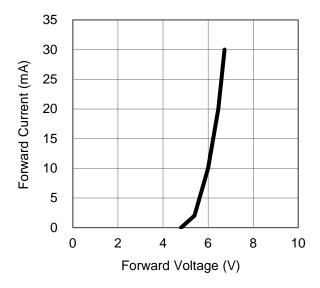


Fig 3. Forward Voltage vs Forward Current

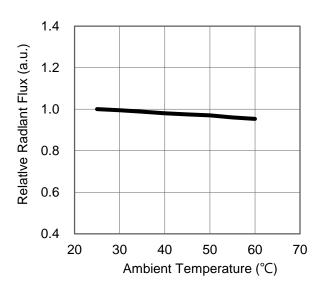


Fig 4. Ambient Temperature vs. Relative Radiant Flux

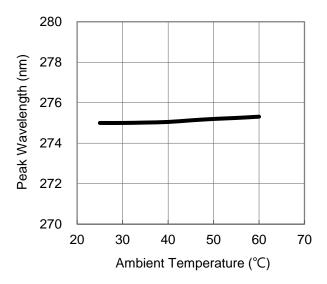


Fig 5. Ambient Temperature vs. Peak Wavelength

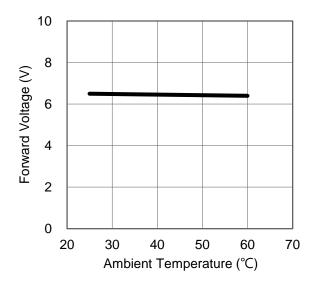
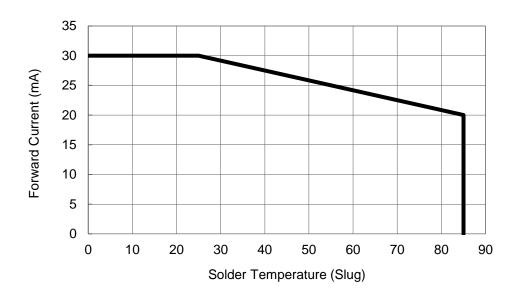
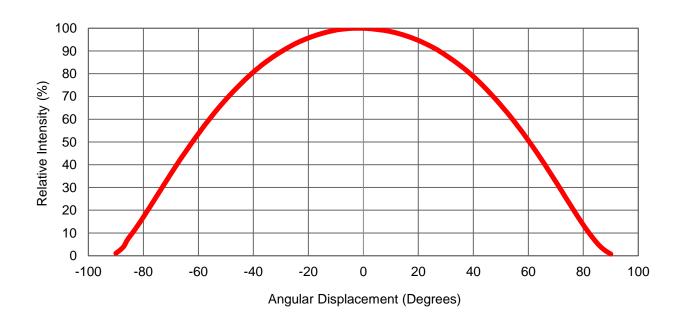



Fig 6. Ambient Temperature vs. Forward Voltage


Solder Temperature (Slug) vs. Maximum Forward Current

1. UV-C $(T_{JMAX} = 85^{\circ}C)$

Typical Representative Spatial Radiation Pattern

Radiation Pattern

During Storage

Conditions		Temperature	Humidity	Time
	Before Opening	5°C ~ 30°C	< 50%RH	Within 1 Year from
Storago	Aluminum Bag			the Delivery Date
Storage	After Opening	5°C ~ 30°C	< 60%RH	≤ 672 hours
	Aluminum Bag			2 072 Hours
Baking		65 ± 5°C	< 10%RH	10 ~ 24 hours

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020D.

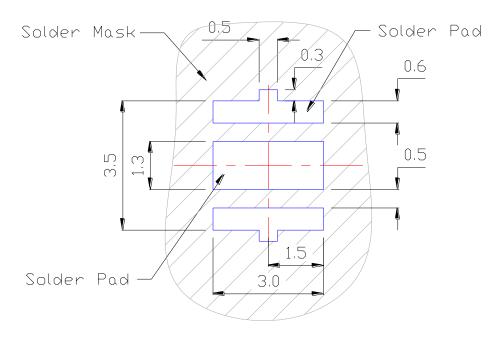
Qualification Reliability Testing

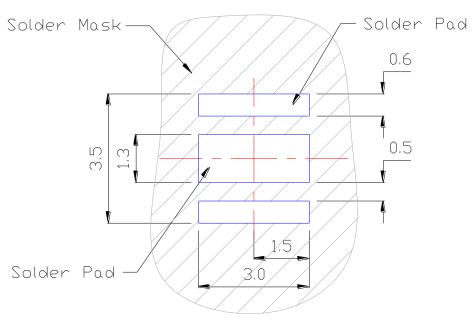
Items	Test Conditions	Test Hours/Cycles	Sample Size
Room Temperature Operating Life(RTOL)	Ta = 25°C, If = 30mA	500 Hours	10 pcs
High Temperature Operating Life (HTOL)	Ta = 60°C, If = 20mA	500 Hours	10 pcs
Wet High Temperature Operating Life (WHTOL)	Ta = 60°C, RH = 90%, If = 20mA	500 Hours	10 pcs
Low Temperature Operating Life (LTOL)	Ta = -10°C, If = 20mA	500 Hours	10 pcs
High Temperature Storage Life (HTSL)	Ta = 85°C	500 Hours	10 pcs
Low Temperature Storage Life (LTSL)	Ta = -40°C	500 Hours	10 pcs
Temperature Cycle (TC)	-40°C(30min) ~ 85°C(30min)	500 Cycles	10 pcs
Moisture Sensitivity Level (MSL)	Tsld = 260°C (Pre treatment 60°C,60% 168 hours)	3 Times	10 pcs
Electrostatic Discharge	R = 1.5k Ω , C = 100pF, Test Voltage = 2kV, H.B.M.(Human Body Model)	3 Times Negative/ Positive	10 pcs
Vibration	100~2000~100Hz Sweep 4min. 200m/s2, 3 directions	48 Minutes	10 pcs

Notes:

1. Depending on the maximum derating curve.

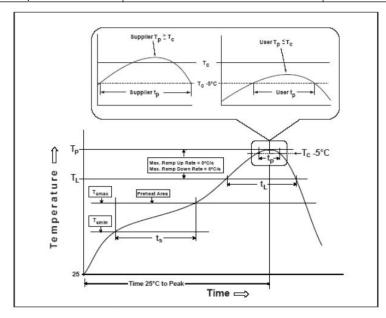
Item	Test Condition	Criteria for Judgement		
item	Test Condition	Min.	Max.	
Forward Voltage (V _F)	$I_F = 20mA DC$		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = 20mA DC	Initial Level x 0.7		


^{*} The test is performed after the LED is cooled down to the room temperature.


Recommended Solder Pad Design

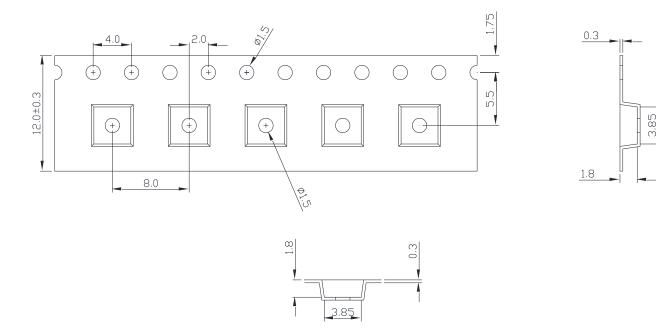
Standard Emitter

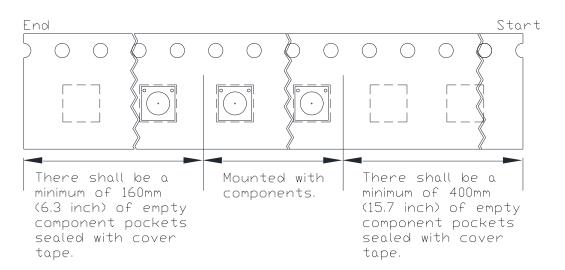
TYPE B.



- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

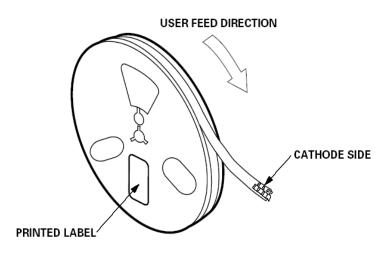
Reflow Soldering Condition

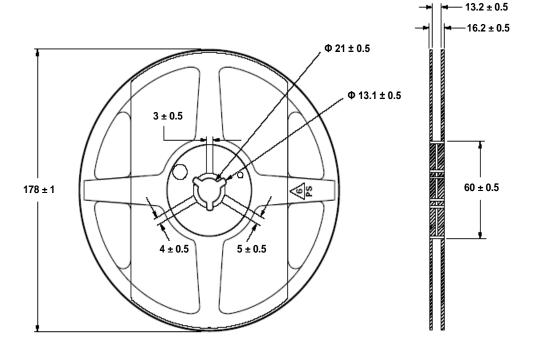

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-Up Rate	3°C / second max.	3°C / second max.	
(T _{Smax} to T _P)			
Preheat			
– Temperature Min (T_{Smin})	100°C	150°C	
– Temperature Max (T_{Smax})	150°C	200°C	
– Time (t _{Smin} to t _{Smax})	60-120 seconds	60-120 seconds	
Time maintained above:			
– Temperature (T _L)	183°C	217°C	
– Time (t _L)	60-150 seconds	60-150 seconds	
Peak/Classification Temperature (T _P)	235°C	260°C	
Time Within 5°C of Actual Peak	10.20 seconds	20.20 seconds	
Temperature (t _p)	10-20 seconds	20-30 seconds	
Ramp-Down Rate	6°C/second max.	6°C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	



- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging




Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.10mm.

Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 100, 250, 500, 1000 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30 °C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Use Handling of LEDs

Notes for handling of LEDs

- Please do not use a force of over 3.0kgf impact or pressure on the LEDs, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the LEDs especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the LEDs.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the LEDs must be prevented.
- Please do not mold over the LEDs with another resin. (epoxy, urethane, etc)

14

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)